metabelian, soluble, monomial, A-group
Aliases: C33⋊4C8, C6.(C32⋊C4), C3⋊(C32⋊2C8), C32⋊4(C3⋊C8), C2.(C33⋊C4), C3⋊Dic3.2S3, (C32×C6).2C4, (C3×C6).5Dic3, (C3×C3⋊Dic3).4C2, SmallGroup(216,118)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊4C8 |
C33 — C33⋊4C8 |
Generators and relations for C33⋊4C8
G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, ac=ca, dad-1=ab-1, bc=cb, dbd-1=a-1b-1, dcd-1=c-1 >
Character table of C33⋊4C8
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 12A | 12B | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 27 | 27 | 27 | 27 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ87 | -i | i | linear of order 8 |
ρ6 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ83 | -i | i | linear of order 8 |
ρ7 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ85 | i | -i | linear of order 8 |
ρ8 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ8 | i | -i | linear of order 8 |
ρ9 | 2 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ11 | 2 | -2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2i | -2i | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -i | i | complex lifted from C3⋊C8 |
ρ12 | 2 | -2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -2i | 2i | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | i | -i | complex lifted from C3⋊C8 |
ρ13 | 4 | 4 | 4 | 1 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 4 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ14 | 4 | 4 | 4 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 4 | 1 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ15 | 4 | -4 | 4 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | -4 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ16 | 4 | -4 | 4 | 1 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | -4 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ17 | 4 | 4 | -2 | 1 | 1 | -2 | -1+3√-3/2 | -1-3√-3/2 | 1 | 0 | 0 | -2 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊C4 |
ρ18 | 4 | 4 | -2 | 1 | 1 | -2 | -1-3√-3/2 | -1+3√-3/2 | 1 | 0 | 0 | -2 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊C4 |
ρ19 | 4 | -4 | -2 | -2 | -1+3√-3/2 | 1 | 1 | 1 | -1-3√-3/2 | 0 | 0 | 2 | 1-3√-3/2 | 2 | -1 | -1 | 1+3√-3/2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 4 | 4 | -2 | -2 | -1-3√-3/2 | 1 | 1 | 1 | -1+3√-3/2 | 0 | 0 | -2 | -1-3√-3/2 | -2 | 1 | 1 | -1+3√-3/2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊C4 |
ρ21 | 4 | -4 | -2 | -2 | -1-3√-3/2 | 1 | 1 | 1 | -1+3√-3/2 | 0 | 0 | 2 | 1+3√-3/2 | 2 | -1 | -1 | 1-3√-3/2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | -2 | 1 | 1 | -2 | -1+3√-3/2 | -1-3√-3/2 | 1 | 0 | 0 | 2 | -1 | -1 | 1-3√-3/2 | 1+3√-3/2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | -2 | 1 | 1 | -2 | -1-3√-3/2 | -1+3√-3/2 | 1 | 0 | 0 | 2 | -1 | -1 | 1+3√-3/2 | 1-3√-3/2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | 4 | -2 | -2 | -1+3√-3/2 | 1 | 1 | 1 | -1-3√-3/2 | 0 | 0 | -2 | -1+3√-3/2 | -2 | 1 | 1 | -1-3√-3/2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊C4 |
(2 22 13)(4 15 24)(6 18 9)(8 11 20)
(1 12 21)(2 22 13)(3 23 14)(4 15 24)(5 16 17)(6 18 9)(7 19 10)(8 11 20)
(1 21 12)(2 13 22)(3 23 14)(4 15 24)(5 17 16)(6 9 18)(7 19 10)(8 11 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (2,22,13)(4,15,24)(6,18,9)(8,11,20), (1,12,21)(2,22,13)(3,23,14)(4,15,24)(5,16,17)(6,18,9)(7,19,10)(8,11,20), (1,21,12)(2,13,22)(3,23,14)(4,15,24)(5,17,16)(6,9,18)(7,19,10)(8,11,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (2,22,13)(4,15,24)(6,18,9)(8,11,20), (1,12,21)(2,22,13)(3,23,14)(4,15,24)(5,16,17)(6,18,9)(7,19,10)(8,11,20), (1,21,12)(2,13,22)(3,23,14)(4,15,24)(5,17,16)(6,9,18)(7,19,10)(8,11,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(2,22,13),(4,15,24),(6,18,9),(8,11,20)], [(1,12,21),(2,22,13),(3,23,14),(4,15,24),(5,16,17),(6,18,9),(7,19,10),(8,11,20)], [(1,21,12),(2,13,22),(3,23,14),(4,15,24),(5,17,16),(6,9,18),(7,19,10),(8,11,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,552);
C33⋊4C8 is a maximal subgroup of
S3×C32⋊2C8 C33⋊5(C2×C8) C33⋊M4(2) C33⋊2M4(2) C33⋊D8 C33⋊6SD16 C33⋊7SD16 C33⋊Q16 C33⋊7(C2×C8) C33⋊4M4(2) C33⋊12M4(2)
C33⋊4C8 is a maximal quotient of
C33⋊4C16
Matrix representation of C33⋊4C8 ►in GL4(𝔽7) generated by
3 | 2 | 4 | 3 |
4 | 5 | 5 | 6 |
3 | 3 | 6 | 1 |
0 | 0 | 0 | 1 |
0 | 5 | 2 | 6 |
0 | 2 | 0 | 2 |
3 | 3 | 6 | 1 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
5 | 3 | 3 | 1 |
2 | 2 | 1 | 6 |
2 | 5 | 6 | 5 |
3 | 3 | 4 | 1 |
G:=sub<GL(4,GF(7))| [3,4,3,0,2,5,3,0,4,5,6,0,3,6,1,1],[0,0,3,0,5,2,3,0,2,0,6,0,6,2,1,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[5,2,2,3,3,2,5,3,3,1,6,4,1,6,5,1] >;
C33⋊4C8 in GAP, Magma, Sage, TeX
C_3^3\rtimes_4C_8
% in TeX
G:=Group("C3^3:4C8");
// GroupNames label
G:=SmallGroup(216,118);
// by ID
G=gap.SmallGroup(216,118);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,12,31,963,201,964,730,5189]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,b*c=c*b,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C33⋊4C8 in TeX
Character table of C33⋊4C8 in TeX